Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-41462
Volltext verfügbar? / Dokumentlieferung
Titel: Hydrophobin Bilayer as Water Impermeable Protein Membrane
VerfasserIn: Nolle, Friederike
Starke, Leonhard J.
Griffo, Alessandra
Lienemann, Michael
Jacobs, Karin
Seemann, Ralf
Fleury, Jean-Baptiste
Hub, Jochen S.
Hähl, Hendrik
Sprache: Englisch
Titel: Langmuir
Bandnummer: 39
Heft: 39
Seiten: 13790-13800
Verlag/Plattform: ACS Publications
Erscheinungsjahr: 2023
Freie Schlagwörter: Liquids
Membranes
Monolayers
Permeability
Vesicles
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: One of the most important properties of membranes is their permeability to water and other small molecules. A targeted change in permeability allows the passage of molecules to be controlled. Vesicles made of membranes with low water permeability are preferable for drug delivery, for example, because they are more stable and maintain the drug concentration inside. This study reports on the very low water permeability of pure protein membranes composed of a bilayer of the amphiphilic protein hydrophobin HFBI. Using a droplet interface bilayer setup, we demonstrate that HFBI bilayers are essentially impermeable to water. HFBI bilayers withstand far larger osmotic pressures than lipid membranes. Only by disturbing the packing of the proteins in the HFBI bilayer is a measurable water permeability induced. To investigate possible molecular mechanisms causing the near-zero permeability, we used all-atom molecular dynamics simulations of various HFBI bilayer models. The simulations suggest that the experimental HFBI bilayer permeability is compatible neither with a lateral honeycomb structure, as found for HFBI monolayers, nor with a residual oil layer within the bilayer or with a disordered lateral packing similar to the packing in lipid bilayers. These results suggest that the low permeabilities of HFBI and lipid bilayers rely on different mechanisms. With their extremely low but adaptable permeability and high stability, HFBI membranes could be used as an osmotic pressure-insensitive barrier in situations where lipid membranes fail such as desalination membranes.
DOI der Erstveröffentlichung: 10.1021/acs.langmuir.3c01006
URL der Erstveröffentlichung: https://doi.org/10.1021/acs.langmuir.3c01006
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-414620
hdl:20.500.11880/37148
http://dx.doi.org/10.22028/D291-41462
ISSN: 1520-5827
0743-7463
Datum des Eintrags: 19-Jan-2024
Bezeichnung des in Beziehung stehenden Objekts: Supporting Information
In Beziehung stehendes Objekt: https://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.3c01006/suppl_file/la3c01006_si_002.pdf
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Physik
Professur: NT - Prof. Dr. Karin Jacobs
NT - Prof. Dr. Ralf Seemann
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.