Please use this identifier to cite or link to this item: doi:10.22028/D291-41777
Title: Experimental and virtual testing of bone-implant systems equipped with the AO Fracture Monitor with regard to interfragmentary movement
Author(s): Wickert, Kerstin
Roland, Michael
Andres, Annchristin
Diebels, Stefan
Ganse, Bergita
Kerner, Dorothea
Frenzel, Felix
Tschernig, Thomas
Ernst, Manuela
Windolf, Markus
Müller, Max
Pohlemann, Tim
Orth, Marcel
Language: English
Title: Frontiers in Bioengineering and Biotechnology
Volume: 12
Publisher/Platform: Frontiers
Year of Publication: 2024
Free key words: experimental biomechanics
biomechanical simulation
bone healing
orthopedic trauma surgery
osteosynthesis
smart implant
patient monitoring
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: Introduction: The management of fractured bones is a key domain within orthopedic trauma surgery, with the prevention of delayed healing and nonunions forming a core challenge. This study evaluates the efficacy of the AO Fracture Monitor in conjunction with biomechanical simulations to better understand the local mechanics of fracture gaps, which is crucial for comprehending mechanotransduction, a key factor in bone healing. Through a series of experiments and corresponding simulations, the study tests four hypotheses to determine the relationship between physical measurements and the predictive power of biomechanical models. Methods: Employing the AO Fracture Monitor and Digital Image Correlation techniques, the study demonstrates a significant correlation between the surface strain of implants and interfragmentary movements. This provides a foundation for utilizing one-dimensional AO Fracture Monitor measurements to predict three-dimensional fracture behavior, thereby linking mechanical loading with fracture gap dynamics. Moreover, the research establishes that finite element simulations of bone-implant systems can be effectively validated using experimental data, underpinning the accuracy of simulations in replicating physical behaviors. Results and Discussion: The findings endorse the combined use of monitoring technologies and simulations to infer the local mechanical conditions at the fracture site, offering a potential leap in personalized therapy for bone healing. Clinically, this approach can enhance treatment outcomes by refining the assessment precision in trauma trials, fostering the early detection of healing disturbances, and guiding improvements in future implant design. Ultimately, this study paves the way for more sophisticated patient monitoring and tailored interventions, promising to elevate the standard of care in orthopedic trauma surgery.
DOI of the first publication: 10.3389/fbioe.2024.1370837
URL of the first publication: https://doi.org/10.3389/fbioe.2024.1370837
Link to this record: urn:nbn:de:bsz:291--ds-417774
hdl:20.500.11880/37383
http://dx.doi.org/10.22028/D291-41777
ISSN: 2296-4185
Date of registration: 19-Mar-2024
Faculty: M - Medizinische Fakultät
NT - Naturwissenschaftlich- Technische Fakultät
Department: M - Anatomie und Zellbiologie
M - Chirurgie
M - Radiologie
NT - Materialwissenschaft und Werkstofftechnik
Professorship: M - Prof. Dr. med. Bergita Ganse
M - Prof. Dr. Carola Meier
M - Prof. Dr. Tim Pohlemann
NT - Prof. Dr. Stefan Diebels
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
fbioe-12-1370837.pdf5,84 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons