Please use this identifier to cite or link to this item: doi:10.22028/D291-41942
Volltext verfügbar? / Dokumentlieferung
Title: Hydrogen densification in carbon nanopore confinement: Insights from small-angle neutron scattering using a hierarchical contrast model
Author(s): Stock, Sebastian
Seyffertitz, Malina
Kostoglou, Nikolaos
Rauscher, Max Valentin
Presser, Volker
Demé, Bruno
Cristiglio, Viviana
Kratzer, Markus
Rols, Stéphane
Mitterer, Christian
Paris, Oskar
Language: English
Title: Carbon
Volume: 221
Publisher/Platform: Elsevier
Year of Publication: 2024
Free key words: Nanoporous carbon
Activated carbon cloth
Hydrogen physisorption
Small-angle neutron scattering
Hierarchical pore model
DDC notations: 620 Engineering and machine engineering
Publikation type: Journal Article
Abstract: This study reports on the low-pressure hydrogen (H2) and deuterium (D2) physisorption processes in nanoporous activated carbon cloth at supercritical temperatures. In-situ small-angle neutron scattering (SANS) is employed as a hydrogen-sensitive method to determine the pore-size-dependent and isotope-dependent adsorbate densification for different gas pressures up to 1 bar. The changes of the SANS signal resulting from the physisorption of adsorbate molecules in the pore space is described by analytical pore scattering functions resembling slit-like pores. Analysis based on a hierarchical pore model allows quantifying the pore-size-dependent physical density of the confined adsorbate for three pore classes, resembling roughly the IUPAC classes of ultramicropores, supermicropores, and mesopores. While the adsorbate density within the very smallest pores approaches the bulk solid density of H2 for pressures of about 1 bar at 77 K, it remains much lower for larger pores. A high density is also found for D2 within ultramicropores, but these results are hampered by a subtle effect of an exchange of chemically bound hydrogen by deuterium in the sample. These findings contribute to a fundamentally better understanding of confinement effects on hydrogen densification, and affect materials design for efficient hydrogen storage devices working at realistic cryogenic conditions and low pressures.
DOI of the first publication: 10.1016/j.carbon.2024.118911
URL of the first publication: https://www.sciencedirect.com/science/article/pii/S0008622324001301
Link to this record: urn:nbn:de:bsz:291--ds-419421
hdl:20.500.11880/37546
http://dx.doi.org/10.22028/D291-41942
ISSN: 1873-3891
0008-6223
Date of registration: 29-Apr-2024
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Materialwissenschaft und Werkstofftechnik
Professorship: NT - Prof. Dr. Volker Presser
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.