Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-42022
Titel: The adhesion capability of Staphylococcus aureus cells is heterogeneously distributed over the cell envelope
VerfasserIn: Spengler, Christian
Maikranz, Erik
Glatz, Bernhard
Klatt, Michael Andreas
Heintz, Hannah
Bischoff, Markus
Santen, Ludger
Fery, Andreas
Jacobs, Karin
Sprache: Englisch
Titel: Soft Matter
Bandnummer: 20 (2024)
Heft: 3
Seiten: 484-494
Verlag/Plattform: Royal Society of Chemistry
Erscheinungsjahr: 2023
DDC-Sachgruppe: 500 Naturwissenschaften
610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Understanding and controlling microbial adhesion is a critical challenge in biomedical research, given the profound impact of bacterial infections on global health. Many facets of bacterial adhesion, including the distribution of adhesion forces across the cell wall, remain poorly understood. While a recent ‘patchy colloid’ model has shed light on adhesion in Gram-negative Escherichia coli cells, a corresponding model for Gram-positive cells has been elusive. In this study, we employ single cell force spectroscopy to investigate the adhesion force of Staphylococcus aureus. Normally, only one contact point of the entire bacterial surface is measured. However, by using a sine-shaped surface and recording forcedistance curves along a path perpendicular to the rippled structures, we can characterize almost a hemisphere of one and the same bacterium. This unique approach allows us to study a greater number of contact points between the bacterium and the surface compared to conventional flat substrata. Distributed over the bacterial surface, we identify sites of higher and lower adhesion, which we call ‘patchy adhesion’, reminiscent of the patchy colloid model. The experimental results show that only some cells exhibit particularly strong adhesion at certain locations. To gain a better understanding of these locations, a geometric model of the bacterial cell surface was created. The experimental results were best reproduced by a model that features a few (5-6) particularly strong adhesion sites (diameter about 250 nm) that are widely distributed over the cell surface. Within the simulated patches, the number of molecules or their individual adhesive strength is increased. A more detailed comparison shows that simple geometric considerations for interacting molecules are not sufficient, but rather strong angle-dependent molecule-substratum interactions are required. We discuss the implications of our results for the development of new materials and the design and analysis of future studies.
DOI der Erstveröffentlichung: 10.1039/D3SM01045G
URL der Erstveröffentlichung: https://doi.org/10.1039/D3SM01045G
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-420229
hdl:20.500.11880/37598
http://dx.doi.org/10.22028/D291-42022
ISSN: 1744-6848
1744-683X
Datum des Eintrags: 7-Mai-2024
Bezeichnung des in Beziehung stehenden Objekts: Electronic supplementary information
In Beziehung stehendes Objekt: https://www.rsc.org/suppdata/d3/sm/d3sm01045g/d3sm01045g1.pdf
Fakultät: M - Medizinische Fakultät
NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: M - Infektionsmedizin
NT - Physik
Professur: M - Prof. Dr. Sören Becker
NT - Prof. Dr. Karin Jacobs
NT - Prof. Dr. Ludger Santen
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
d3sm01045g.pdf5,34 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons