Please use this identifier to cite or link to this item:
doi:10.22028/D291-42092
Title: | In Vivo and In Vitro Metabolic Fate and Urinary Detectability of Five Deschloroketamine Derivatives Studied by Means of Hyphenated Mass Spectrometry |
Author(s): | Frankenfeld, Fabian Wagmann, Lea Abelian, Anush Wallach, Jason Adejare, Adeboye Brandt, Simon D. Meyer, Markus R. |
Language: | English |
Title: | Metabolites |
Volume: | 14 |
Issue: | 5 |
Publisher/Platform: | MDPI |
Year of Publication: | 2024 |
Free key words: | new psychoactive substance deschloroketamine deschloro-N-ethyl-ketamine deschloroN-isopropyl-ketamine deschloro-N-cyclopropyl-ketamine deschloro-N-propyl-ketamine metabolism in vivo in vitro LC-HRMS/MS |
DDC notations: | 610 Medicine and health |
Publikation type: | Journal Article |
Abstract: | Ketamine derivatives such as deschloroketamine and deschloro-N-ethyl-ketamine show dissociative and psychoactive properties and their abuse as new psychoactive substances (NPSs) has been reported. Though some information is available on the biotransformation of dissociative NPSs, data on deschloro-N-cyclopropyl-ketamine deschloro-N-isopropyl-ketamine and deschloro-Npropyl-ketamine concerning their biotransformation and, thus, urinary detectability are not available. The aims of the presented work were to study the in vivo phase I and II metabolism; in vitro phase I metabolism, using pooled human liver microsomes (pHLMs); and detectability, within a standard urine screening approach (SUSA), of five deschloroketamine derivatives. Metabolism studies were conducted by collecting urine samples from male Wistar rats over a period of 24 h after their administration at 2 mg/kg body weight. The samples were analyzed using liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) and gas chromatography–mass spectrometry (GC-MS). The compounds were mainly metabolized by N-dealkylation, hydroxylation, multiple oxidations, and combinations of these metabolic reactions, as well as glucuronidation and N-acetylation. In total, 29 phase I and 10 phase II metabolites were detected. For the LC-HRMS/MS SUSA, compound-specific metabolites were identified, and suitable screening targets could be recommended and confirmed in pHLMs for all derivatives except for deschloro-N-cyclopropyl-ketamine. Using the GC-MS-based SUSA approach, only non-specific acetylated N-dealkylation metabolites could be detected. |
DOI of the first publication: | 10.3390/metabo14050270 |
URL of the first publication: | https://doi.org/10.3390/metabo14050270 |
Link to this record: | urn:nbn:de:bsz:291--ds-420922 hdl:20.500.11880/37724 http://dx.doi.org/10.22028/D291-42092 |
ISSN: | 2218-1989 |
Date of registration: | 28-May-2024 |
Description of the related object: | Supplementary Materials |
Related object: | https://www.mdpi.com/article/10.3390/metabo14050270/s1 |
Faculty: | M - Medizinische Fakultät |
Department: | M - Experimentelle und Klinische Pharmakologie und Toxikologie |
Professorship: | M - Prof. Dr. Markus Meyer |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
metabolites-14-00270.pdf | 1,37 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License