Please use this identifier to cite or link to this item:
doi:10.22028/D291-43566 | Title: | On commutator length in free groups |
| Author(s): | Bartholdi, Laurent Ivanov, Sergei O. Fialkovski, Danil |
| Language: | English |
| Title: | Groups, geometry, and dynamics : GGD |
| Volume: | 18 |
| Issue: | 1 |
| Pages: | 191-202 |
| Publisher/Platform: | EMS Publ. |
| Year of Publication: | 2024 |
| Free key words: | Commutator length equations in free groups |
| DDC notations: | 500 Science |
| Publikation type: | Journal Article |
| Abstract: | Let F be a free group. We present for arbitrary g∈N a LOGSPACE (and thus polynomial time) algorithm that determines whether a given w∈F is a product of at most g commutators; and more generally, an algorithm that determines, given w∈F, the minimal g such that w may be written as a product of g commutators (and returns ∞ if no such g exists). This algorithm also returns words x 1 ,y 1 ,…,x g ,y g such that w=[x 1 ,y 1]…[x g ,y g]. These algorithms are also efficient in practice. Using them, we produce the first example of a word in the free group whose commutator length decreases under taking a square. This disproves in a very strong sense a conjecture by Bardakov. |
| DOI of the first publication: | 10.4171/ggd/747 |
| URL of the first publication: | https://ems.press/journals/ggd/articles/12655883 |
| Link to this record: | urn:nbn:de:bsz:291--ds-435663 hdl:20.500.11880/39041 http://dx.doi.org/10.22028/D291-43566 |
| ISSN: | 1661-7215 1661-7207 |
| Date of registration: | 27-Nov-2024 |
| Faculty: | MI - Fakultät für Mathematik und Informatik |
| Department: | MI - Mathematik |
| Professorship: | MI - Prof. Dr. Laurent Bartholdi |
| Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 10.4171-ggd-747.pdf | 258,03 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License

