Please use this identifier to cite or link to this item: doi:10.22028/D291-45601
Title: On the descriptive power of Neural-Networks as constrained Tensor Networks with exponentially large bond dimension
Author(s): Collura, Mario
Dell'Anna, Luca
Felser, Timo
Montangero, Simone
Language: English
Title: SciPost Physics Core
Volume: 4
Issue: 1
Publisher/Platform: SciPost
Year of Publication: 2021
DDC notations: 500 Science
Publikation type: Journal Article
Abstract: In many cases, neural networks can be mapped into tensor networks with an exponen tially large bond dimension. Here, we compare different sub-classes of neural network states, with their mapped tensor network counterpart for studying the ground state of short-range Hamiltonians. We show that when mapping a neural network, the resulting tensor network is highly constrained and thus the neural network states do in general not deliver the naive expected drastic improvement against the state-of-the-art tensor network methods. We explicitly show this result in two paradigmatic examples, the 1D ferromagnetic Ising model and the 2D antiferromagnetic Heisenberg model, addressing the lack of a detailed comparison of the expressiveness of these increasingly popular, variational ansätze.
DOI of the first publication: 10.21468/SciPostPhysCore.4.1.001
URL of the first publication: https://doi.org/10.21468/SciPostPhysCore.4.1.001
Link to this record: urn:nbn:de:bsz:291--ds-456011
hdl:20.500.11880/40112
http://dx.doi.org/10.22028/D291-45601
ISSN: 2666-9366
Date of registration: 11-Jun-2025
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Physik
Professorship: NT - Prof. Dr. Giovanna Morigi
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
SciPostPhysCore_4_1_001.pdf1,71 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons