Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-45737
Titel: Smart Justice? Making Sense of the Rise of Algorithm-Based Pre-trial Risk Assessment in Criminal Justice Through ‘Legal Models’
VerfasserIn: Wenzelburger, Georg
Yeung, Karen
Hartmann, Kathrin
Sprache: Englisch
Titel: Digital Society
Bandnummer: 4
Heft: 2
Verlag/Plattform: Springer Nature
Erscheinungsjahr: 2025
Freie Schlagwörter: Bail reform
Criminal justice
Risk assessment
Algorithmic
Legal models
DDC-Sachgruppe: 300 Sozialwissenschaften, Soziologie, Anthropologie
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: With the increased use of algorithmic tools embedded in software by state ac tors, scholars from criminology, criminal justice as well as from data science have analyzed the recent wave of ‘smart-on-crime’-politics in the US and the political dynamics underpinning this movement. However, while reforms of the US bail system have been studied extensively, we know little about how these reforms, including the recent embrace of digital risk prediction tools, reflect shifting com mitments to underlying principles of the CJ system. Therefore, this article interprets the waves of US bail reforms through the application of three legal-theoretical models: ‘retributive justice’ (RJ), ‘actuarial justice’ (AJ) and ‘preventive justice’ (PJ). This conceptual lens enables us to illuminate how the increased use of pre trial risk assessment tools based on big data can be understood in legal-theoretical terms. Empirically, we find a shift away from censure and retribution towards crime prevention and the use of risk assessment tools, which both AJ and PJ models can accommodate. However, while our analysis demonstrates that these models help draw into sharper focus the principles and values which animated US bail reforms, it also reveals several limitations owing to the nature of these models as witnesses of the time when they were developed.
DOI der Erstveröffentlichung: 10.1007/s44206-025-00194-7
URL der Erstveröffentlichung: https://link.springer.com/article/10.1007/s44206-025-00194-7
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-457373
hdl:20.500.11880/40212
http://dx.doi.org/10.22028/D291-45737
ISSN: 2731-4669
2731-4650
Datum des Eintrags: 2-Jul-2025
Fakultät: HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft
Fachrichtung: HW - Gesellschaftswissenschaftliche Europaforschung
Professur: HW - Prof. Dr. Georg Wenzelburger
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
s44206-025-00194-7.pdf998,32 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons