Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-46509
Titel: An automated Machine Learning based approach for a reproducible and efficient evaluation of industrial Charpy V-notch specimens
VerfasserIn: Herges, Adrian
Bachmann, Björn-Ivo
Scholl, Sebastian
Mücklich, Frank
Sprache: Englisch
Titel: Materials & Design
Bandnummer: 257
Verlag/Plattform: Elsevier
Erscheinungsjahr: 2025
Freie Schlagwörter: Charpy V-notch
Fracture surfaces
Machine learning
Fracture surface classification
Ductile-Brittle-Transition-Temperature
DDC-Sachgruppe: 500 Naturwissenschaften
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: An objective and automated method for the quantification of macroscopic images of tested Charpy V-notch specimens, specifically focusing on their ductility/brittleness characteristics based on a realistic, homogeneous and industrial environment is proposed. Our approach involves a multi-step preprocessing routine that incorporates color thresholding and connected component analysis to first detect the various Charpy V-notch specimen bundles according to their sample material affiliation and testing temperature. Subsequently, a U-Net was trained to further partition the preprocessed images into background, notch, and regions of ductile or brittle fracture, respectively through semantic segmentation. Thereby, a quantification of brittle and ductile fractions of each individual sample focusing on only the fracture surfaces can be conducted. The results obtained are then evaluated using Intersection over Union (IoU) metrics, a tailored domain-specific matrix and SEM images incorporating more objective annotations based on the high resolution and the higher depth of focus to assess the model performance. The findings presented in this study highlight the significant potential of machine learning and computer vision in the realm of a reproducible and objective, automated macroscopic fracture analysis on an industrial scale, providing valuable benefits for materials engineering and quality control in manufacturing processes.
DOI der Erstveröffentlichung: 10.1016/j.matdes.2025.114424
URL der Erstveröffentlichung: https://doi.org/10.1016/j.matdes.2025.114424
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-465099
hdl:20.500.11880/40767
http://dx.doi.org/10.22028/D291-46509
ISSN: 0264-1275
Datum des Eintrags: 3-Nov-2025
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Frank Mücklich
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
1-s2.0-S0264127525008445-main.pdf11,35 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons