Please use this identifier to cite or link to this item: doi:10.22028/D291-46617
Title: Parameter estimation for cellular automata
Author(s): Kazarnikov, Alexey
Ray, Nadja
Haario, Heikki
Lappalainen, Joona
Rupp, Andreas
Language: English
Title: Japanese Journal of Statistics and Data Science
Volume: 8
Issue: 2
Pages: 995-1020
Publisher/Platform: Springer Nature
Year of Publication: 2025
Free key words: Cellular automaton
Discrete model
Parameter identification
Statistical approach
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: Self-organizing complex systems can be modeled using cellular automaton models. However, the parametrization of these models is crucial and significantly determines the resulting structural pattern. In this research, we introduce and successfully apply a sound statistical method to estimate these parameters. The decisive difference to earlier applications of such approaches is that, in our case, both the CA rules and the resulting patterns are discrete. The method is based on constructing Gaussian likelihoods using characteristics of the structures, such as the mean particle size. We show that our approach is robust for the method parameters, domain size of patterns, or CA iterations.
DOI of the first publication: 10.1007/s42081-024-00283-w
URL of the first publication: https://doi.org/10.1007/s42081-024-00283-w
Link to this record: urn:nbn:de:bsz:291--ds-466171
hdl:20.500.11880/40868
http://dx.doi.org/10.22028/D291-46617
ISSN: 2520-8764
2520-8756
Date of registration: 2-Dec-2025
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Andreas Rupp
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s42081-024-00283-w.pdf3,81 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons