Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-46643
Titel: Structural covariance analysis for neurodegenerative and neuroinflammatory brain disorders
VerfasserIn: Mongay-Ochoa, Neus
González Escamilla, Gabriel
Fleischer, Vinzenz
Pareto, Deborah
Rovira, Àlex
Sastre-Garriga, Jaume
Groppa, Sergiu
Sprache: Englisch
Titel: Brain
Bandnummer: 148
Heft: 9
Seiten: 3072-3084
Verlag/Plattform: Oxford University Press
Erscheinungsjahr: 2025
Freie Schlagwörter: morphometric covariance networks
structural MRI
grey matter
neuroinflammation
neurodegeneration
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Structural MRI can robustly assess brain tissue alterations related to neurological diseases and ageing. Traditional morphological MRI metrics, such as cortical volume and thickness, only partially relate to functional impairment and disease trajectories at the individual level. Emerging research has increasingly focused on reconstructing interregional meso- and macro-structural relationships in the brain by analysing covarying morphometric patterns. These patterns suggest that structural variations in specific brain regions tend to covary with deviations in other regions across individuals, a phenomenon termed structural covariance. This concept reflects the idea that physiological and pathological processes follow an anatomically defined spreading pattern. Advanced computational strategies, particularly those within the graph-theoretical framework, yield quantifiable properties at both the whole-brain and regional levels, which correlate more closely with the clinical state or cognitive performance than classical atrophy patterns. This review highlights cutting-edge methods for evaluating morphometric covariance networks on an individual basis, with a focus on their utility in characterizing ageing, central nervous system inflammation and neurodegeneration. Specifically, these methods hold significant potential for quantifying structural alterations in patients with Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia and multiple sclerosis. By capturing the distinctive morphometric organization of each individual’s brain, structural covariance network analyses allow the tracking and prediction of pathology progression and clinical outcomes, information that can be integrated into clinical decision-making and used as variables in clinical trials. Furthermore, by investigating distinct and cross-diagnostic patterns of structural covariance, these approaches offer insights into shared mechanistic processes critical to understanding severe neurological disorders and their therapeutic implications. Such advancements pave the way for more precise diagnostic tools and targeted therapeutic strategies.
DOI der Erstveröffentlichung: 10.1093/brain/awaf151
URL der Erstveröffentlichung: https://doi.org/10.1093/brain/awaf151
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-466439
hdl:20.500.11880/40885
http://dx.doi.org/10.22028/D291-46643
ISSN: 1460-2156
0006-8950
Datum des Eintrags: 8-Dez-2025
Bezeichnung des in Beziehung stehenden Objekts: Supplementary material
In Beziehung stehendes Objekt: https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/brain/148/9/10.1093_brain_awaf151/1/awaf151_supplementary_data.pdf?Expires=1768203407&Signature=EKNCna0i6q2PwYTKS9WQmSYs-rBtJgMi3jLELPnElGf3TXSiXhnkv0ppUjmHXZIJsGPwK6z~pbb-xMFQQOJtMK8mTduC51g3nTShc85Um2RXR9~Q1Z9ZHJavOsnPZAtAAw2c1dFENe5lv5AoNjyRgaGKr0P9Aokm6ZaPdBKm1F6ca9TffWhspseqSKfowtIqyRhVmMHCcFrvutU12U56hHPZeZNvPOJfiNWh9ynMDuKGqHnfJ94uyad7T2RQaZm~1rHz329b4ScARBfR0buwthJRCV1C71GJ1cRN88OAas8azjo2dbDjAUbfYejTwFTmPUgAPQw-4w876FAPjqVNpQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Neurologie und Psychiatrie
Professur: M - Prof. Dr. Sergiu Groppa
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
awaf151.pdf866,27 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons