Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-46857
Titel: Machine Learning Accurately Predicts Muscle Invasion of Bladder Cancer Based on Three miRNAs
VerfasserIn: Eckhart, Lea
Rau, Sabrina
Eckstein, Markus
Stahl, Phillip R.
Ayoubian, Hiresh
Heinzelbecker, Julia
Zohari, Farzaneh
Hartmann, Arndt
Stöckle, Michael
Lenhof, Hans-Peter
Junker, Kerstin
Sprache: Englisch
Titel: Journal of Cellular and Molecular Medicine
Bandnummer: 29
Heft: 3
Verlag/Plattform: Wiley
Erscheinungsjahr: 2025
Freie Schlagwörter: machine learning algorithms
microRNA
molecular subtypes
muscle-invasive bladder cancer
pT1 high-grade tumours
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The aim of this study was to validate the diagnostic potential of four previously identified miRNAs in two independent cohorts and to develop accurate classification models to predict invasiveness of bladder cancer. Furthermore, molecular subtypes were investigated. The miRNAs were isolated from pTa low-grade (lg) (n = 113), pT1 high-grade (hg) (n = 133) and muscle-invasive bladder cancer (MIBC) (n = 136) tumour tissue samples (FFPE) after either transurethral resection of a bladder tumour (TURB) or cystectomy (CYS). In both cohorts, the expression of miR-138-5p and miR-200a-3p was significantly lower, and the expression of miR-146b-5p and miR-155-5p was significantly higher in MIBC compared to pTa lg. A k-nearest neighbours (KNN) classifier trained to distinguish pTa lg from MIBC based on three miRNAs achieved an accuracy of 0.94. The accuracy remained at 0.91 when the classifier was applied exclusively to the TURB samples. To guarantee reliable predictions, a conformal prediction approach was applied to the KNN model, which eliminated all misclassifications on the test cohort. pT1 hg samples were classified as MIBC in 32% of cases using the KNN model. miR-146b-5p, miR-155-5p and miR-200a-3p expressions are significantly associated with particular molecular subtypes. In conclusion, we confirmed that the four miRNAs significantly distinguish MIBC from NMIBC. A classification model based on three miRNAs was able to accurately classify the phenotype of invasive tumors. This could potentially support the histopathological diagnosis in bladder cancer and therefore, the clinical decision between performing a radical cystectomy and pursuing bladder-conserving strategies, especially in pT1 hg tumors.
DOI der Erstveröffentlichung: 10.1111/jcmm.70361
URL der Erstveröffentlichung: https://doi.org/10.1111/jcmm.70361
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-468577
hdl:20.500.11880/41049
http://dx.doi.org/10.22028/D291-46857
ISSN: 1582-4934
1582-1838
Datum des Eintrags: 2-Feb-2026
Bezeichnung des in Beziehung stehenden Objekts: Supporting Information
In Beziehung stehendes Objekt: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjcmm.70361&file=jcmm70361-sup-0001-FigureS1.jpg
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjcmm.70361&file=jcmm70361-sup-0002-FigureS2.jpg
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjcmm.70361&file=jcmm70361-sup-0003-FigureS3.jpg
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fjcmm.70361&file=jcmm70361-sup-0004-FigureS4.jpg
Fakultät: M - Medizinische Fakultät
MI - Fakultät für Mathematik und Informatik
Fachrichtung: M - Urologie und Kinderurologie
MI - Informatik
Professur: M - Prof. Dr. Michael Stöckle
MI - Prof. Dr. Hans-Peter Lenhof
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes



Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons