Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-27502 | Titel: | Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation |
| VerfasserIn: | Schultealbert, Caroline Baur, Tobias Schütze, Andreas Sauerwald, Tilman |
| Sprache: | Englisch |
| Titel: | Sensors |
| Bandnummer: | 18 |
| Heft: | 3 |
| Verlag/Plattform: | MDPI |
| Erscheinungsjahr: | 2018 |
| DDC-Sachgruppe: | 600 Technik |
| Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
| Abstract: | Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H2, ammonia and benzene) using randomized gas exposures. |
| DOI der Erstveröffentlichung: | 10.3390/s18030744 |
| Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-275022 hdl:20.500.11880/28659 http://dx.doi.org/10.22028/D291-27502 |
| ISSN: | 1424-8220 |
| Datum des Eintrags: | 30-Jan-2020 |
| Bezeichnung des in Beziehung stehenden Objekts: | Supplementary Material |
| In Beziehung stehendes Objekt: | https://www.mdpi.com/1424-8220/18/3/744/s1 |
| Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
| Fachrichtung: | NT - Systems Engineering |
| Professur: | NT - Prof. Dr. Andreas Schütze |
| Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| sensors-18-00744-v2.pdf | 2,25 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons

