Please use this identifier to cite or link to this item: doi:10.22028/D291-44394
Title: A family of NADPH/NADP+ biosensors reveals in vivo dynamics of central redox metabolism across eukaryotes
Author(s): Scherschel, Marie
Niemeier, Jan-Ole
Jacobs, Lianne J. H. C.
Hoffmann, Markus D. A.
Diederich, Anika
Bell, Christopher
Höhne, Pascal
Raetz, Sonja
Kroll, Johanna B.
Steinbeck, Janina
Lichtenauer, Sophie
Multhoff, Jan
Zimmermann, Jannik
Sadhanasatish, Tanmay
Rothemann, R. Alexander
Grashoff, Carsten
Messens, Joris
Ampofo, Emmanuel
Laschke, Matthias W.
Riemer, Jan
Roma, Leticia Prates
Schwarzländer, Markus
Morgan, Bruce
Language: English
Title: Nature Communications
Volume: 15
Issue: 1
Publisher/Platform: Springer Nature
Year of Publication: 2024
Free key words: Fluorescent proteins
Metabolic pathways
Oxidoreductases
DDC notations: 500 Science
610 Medicine and health
Publikation type: Journal Article
Abstract: The NADPH/NADP+ redox couple is central to metabolism and redox signalling. NADP redox state is differentially regulated by distinct enzymatic machineries at the subcellular compartment level. Nonetheless, a detailed understanding of subcellular NADP redox dynamics is limited by the availability of appropriate tools. Here, we introduce NAPstars, a family of genetically encoded, fluorescent protein-based NADP redox state biosensors. NAPstars offer real-time, specific measurements, across a broad-range of NADP redox states, with subcellular resolution. NAPstar measurements in yeast, plants, and mammalian cell models, reveal a conserved robustness of cytosolic NADP redox homoeostasis. NAPstars uncover cell cycle-linked NADP redox oscillations in yeast and illumination- and hypoxia-dependent NADP redox changes in plant leaves. By applying NAPstars in combination with selective impairment of the glutathione and thioredoxin antioxidative pathways under acute oxidative challenge, we find an unexpected and conserved role for the glutathione system as the primary mediator of antioxidative electron flux.
DOI of the first publication: 10.1038/s41467-024-55302-x
URL of the first publication: https://www.nature.com/articles/s41467-024-55302-x
Link to this record: urn:nbn:de:bsz:291--ds-443940
hdl:20.500.11880/39656
http://dx.doi.org/10.22028/D291-44394
ISSN: 2041-1723
Date of registration: 14-Feb-2025
Description of the related object: Supplementary information
Related object: https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-024-55302-x/MediaObjects/41467_2024_55302_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-024-55302-x/MediaObjects/41467_2024_55302_MOESM2_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-024-55302-x/MediaObjects/41467_2024_55302_MOESM3_ESM.pdf
Faculty: M - Medizinische Fakultät
NT - Naturwissenschaftlich- Technische Fakultät
Department: M - Biophysik
M - Chirurgie
NT - Biowissenschaften
Professorship: M - Prof. Dr. Michael D. Menger
M - Dr. Leticia Prates Roma
NT - Prof. Dr. Bruce Morgan
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s41467-024-55302-x.pdf11,39 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons