Please use this identifier to cite or link to this item:
doi:10.22028/D291-44394
Title: | A family of NADPH/NADP+ biosensors reveals in vivo dynamics of central redox metabolism across eukaryotes |
Author(s): | Scherschel, Marie Niemeier, Jan-Ole Jacobs, Lianne J. H. C. Hoffmann, Markus D. A. Diederich, Anika Bell, Christopher Höhne, Pascal Raetz, Sonja Kroll, Johanna B. Steinbeck, Janina Lichtenauer, Sophie Multhoff, Jan Zimmermann, Jannik Sadhanasatish, Tanmay Rothemann, R. Alexander Grashoff, Carsten Messens, Joris Ampofo, Emmanuel Laschke, Matthias W. Riemer, Jan Roma, Leticia Prates Schwarzländer, Markus Morgan, Bruce |
Language: | English |
Title: | Nature Communications |
Volume: | 15 |
Issue: | 1 |
Publisher/Platform: | Springer Nature |
Year of Publication: | 2024 |
Free key words: | Fluorescent proteins Metabolic pathways Oxidoreductases |
DDC notations: | 500 Science 610 Medicine and health |
Publikation type: | Journal Article |
Abstract: | The NADPH/NADP+ redox couple is central to metabolism and redox signalling. NADP redox state is differentially regulated by distinct enzymatic machineries at the subcellular compartment level. Nonetheless, a detailed understanding of subcellular NADP redox dynamics is limited by the availability of appropriate tools. Here, we introduce NAPstars, a family of genetically encoded, fluorescent protein-based NADP redox state biosensors. NAPstars offer real-time, specific measurements, across a broad-range of NADP redox states, with subcellular resolution. NAPstar measurements in yeast, plants, and mammalian cell models, reveal a conserved robustness of cytosolic NADP redox homoeostasis. NAPstars uncover cell cycle-linked NADP redox oscillations in yeast and illumination- and hypoxia-dependent NADP redox changes in plant leaves. By applying NAPstars in combination with selective impairment of the glutathione and thioredoxin antioxidative pathways under acute oxidative challenge, we find an unexpected and conserved role for the glutathione system as the primary mediator of antioxidative electron flux. |
DOI of the first publication: | 10.1038/s41467-024-55302-x |
URL of the first publication: | https://www.nature.com/articles/s41467-024-55302-x |
Link to this record: | urn:nbn:de:bsz:291--ds-443940 hdl:20.500.11880/39656 http://dx.doi.org/10.22028/D291-44394 |
ISSN: | 2041-1723 |
Date of registration: | 14-Feb-2025 |
Description of the related object: | Supplementary information |
Related object: | https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-024-55302-x/MediaObjects/41467_2024_55302_MOESM1_ESM.pdf https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-024-55302-x/MediaObjects/41467_2024_55302_MOESM2_ESM.pdf https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-024-55302-x/MediaObjects/41467_2024_55302_MOESM3_ESM.pdf |
Faculty: | M - Medizinische Fakultät NT - Naturwissenschaftlich- Technische Fakultät |
Department: | M - Biophysik M - Chirurgie NT - Biowissenschaften |
Professorship: | M - Prof. Dr. Michael D. Menger M - Dr. Leticia Prates Roma NT - Prof. Dr. Bruce Morgan |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
s41467-024-55302-x.pdf | 11,39 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License