Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
-kein DOI; bitte anderen URI nutzen
Titel: | Disrupting biological sensors of force promotes tissue regeneration in large organisms |
VerfasserIn: | Chen, Kellen Kwon, Sun Hyung Henn, Dominic Kuehlmann, Britta A. Tevlin, Ruth Bonham, Clark A. Griffin, Michelle Trotsyuk, Artem A. Borrelli, Mimi R. Noishiki, Chikage Padmanabhan, Jagannath Barrera, Janos A. Maan, Zeshaan N. Dohi, Teruyuki Mays, Chyna J. Greco, Autumn H. Sivaraj, Dharshan Lin, John Q. Fehlmann, Tobias Mermin-Bunnell, Alana M. Mittal, Smiti Hu, Michael S. Zamaleeva, Alsu I. Keller, Andreas Rajadas, Jayakumar Longaker, Michael T. Januszyk, Michael Gurtner, Geoffrey C. |
Sprache: | Englisch |
Titel: | Nature Communications |
Bandnummer: | 12 |
Heft: | 1 |
Verlag/Plattform: | Springer Nature |
Erscheinungsjahr: | 2021 |
Freie Schlagwörter: | Experimental models of disease Mechanisms of disease Mechanotransduction Regeneration Regenerative medicine |
DDC-Sachgruppe: | 610 Medizin, Gesundheit |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Tissue repair and healing remain among the most complicated processes that occur during postnatal life. Humans and other large organisms heal by forming fibrotic scar tissue with diminished function, while smaller organisms respond with scarless tissue regeneration and functional restoration. Well-established scaling principles reveal that organism size expo nentially correlates with peak tissue forces during movement, and evolutionary responses have compensated by strengthening organ-level mechanical properties. How these adapta tions may affect tissue injury has not been previously examined in large animals and humans. Here, we show that blocking mechanotransduction signaling through the focal adhesion kinase pathway in large animals significantly accelerates wound healing and enhances regeneration of skin with secondary structures such as hair follicles. In human cells, we demonstrate that mechanical forces shift fibroblasts toward pro-fibrotic phenotypes driven by ERK-YAP activation, leading to myofibroblast differentiation and excessive collagen pro duction. Disruption of mechanical signaling specifically abrogates these responses and instead promotes regenerative fibroblast clusters characterized by AKT-EGR1. |
DOI der Erstveröffentlichung: | 10.1038/s41467-021-25410-z |
URL der Erstveröffentlichung: | https://doi.org/10.1038/s41467-021-25410-z |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-462403 hdl:20.500.11880/40531 |
ISSN: | 2041-1723 |
Datum des Eintrags: | 10-Sep-2025 |
Bezeichnung des in Beziehung stehenden Objekts: | Supplementary information |
In Beziehung stehendes Objekt: | https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-25410-z/MediaObjects/41467_2021_25410_MOESM1_ESM.pdf https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-25410-z/MediaObjects/41467_2021_25410_MOESM2_ESM.pdf |
Fakultät: | M - Medizinische Fakultät |
Fachrichtung: | M - Medizinische Biometrie, Epidemiologie und medizinische Informatik |
Professur: | M - Univ.-Prof. Dr. Andreas Keller |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Größe | Format | |
---|---|---|---|
s41467-021-25410-z.pdf | 11,7 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons