Please use this identifier to cite or link to this item: doi:10.22028/D291-46240
Title: Disrupting biological sensors of force promotes tissue regeneration in large organisms
Author(s): Chen, Kellen
Kwon, Sun Hyung
Henn, Dominic
Kuehlmann, Britta A.
Tevlin, Ruth
Bonham, Clark A.
Griffin, Michelle
Trotsyuk, Artem A.
Borrelli, Mimi R.
Noishiki, Chikage
Padmanabhan, Jagannath
Barrera, Janos A.
Maan, Zeshaan N.
Dohi, Teruyuki
Mays, Chyna J.
Greco, Autumn H.
Sivaraj, Dharshan
Lin, John Q.
Fehlmann, Tobias
Mermin-Bunnell, Alana M.
Mittal, Smiti
Hu, Michael S.
Zamaleeva, Alsu I.
Keller, Andreas
Rajadas, Jayakumar
Longaker, Michael T.
Januszyk, Michael
Gurtner, Geoffrey C.
Language: English
Title: Nature Communications
Volume: 12
Issue: 1
Publisher/Platform: Springer Nature
Year of Publication: 2021
Free key words: Experimental models of disease
Mechanisms of disease
Mechanotransduction
Regeneration
Regenerative medicine
DDC notations: 610 Medicine and health
Publikation type: Journal Article
Abstract: Tissue repair and healing remain among the most complicated processes that occur during postnatal life. Humans and other large organisms heal by forming fibrotic scar tissue with diminished function, while smaller organisms respond with scarless tissue regeneration and functional restoration. Well-established scaling principles reveal that organism size expo nentially correlates with peak tissue forces during movement, and evolutionary responses have compensated by strengthening organ-level mechanical properties. How these adapta tions may affect tissue injury has not been previously examined in large animals and humans. Here, we show that blocking mechanotransduction signaling through the focal adhesion kinase pathway in large animals significantly accelerates wound healing and enhances regeneration of skin with secondary structures such as hair follicles. In human cells, we demonstrate that mechanical forces shift fibroblasts toward pro-fibrotic phenotypes driven by ERK-YAP activation, leading to myofibroblast differentiation and excessive collagen pro duction. Disruption of mechanical signaling specifically abrogates these responses and instead promotes regenerative fibroblast clusters characterized by AKT-EGR1.
DOI of the first publication: 10.1038/s41467-021-25410-z
URL of the first publication: https://doi.org/10.1038/s41467-021-25410-z
Link to this record: urn:nbn:de:bsz:291--ds-462403
hdl:20.500.11880/40531
http://dx.doi.org/10.22028/D291-46240
ISSN: 2041-1723
Date of registration: 10-Sep-2025
Description of the related object: Supplementary information
Related object: https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-25410-z/MediaObjects/41467_2021_25410_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-25410-z/MediaObjects/41467_2021_25410_MOESM2_ESM.pdf
Faculty: M - Medizinische Fakultät
Department: M - Medizinische Biometrie, Epidemiologie und medizinische Informatik
Professorship: M - Univ.-Prof. Dr. Andreas Keller
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s41467-021-25410-z.pdf11,7 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons