Please use this identifier to cite or link to this item: doi:10.22028/D291-46315
Title: Beyond aversion – principles of appropriate algorithmic decision-making in human resource management
Author(s): Strohmeier, Stefan
Becker, Mathias
Scheer-Weller, Ellen
Language: English
Title: Expert Systems with Applications
Volume: 296 (2026)
Publisher/Platform: Elsevier
Year of Publication: 2025
Free key words: Algorithmic Decision-Making
AI Principles
Human Resource Management
Machine Learning
Ethical AI
Prescriptive HR Analytics
DDC notations: 330 Economics
Publikation type: Journal Article
Abstract: As algorithmic decision-making (ADM) becomes increasingly embedded in human resource management (HRM), concerns such as a lack of fairness and accountability raise urgent questions about its appropriateness. This study addresses the need for ADM evaluation by developing a coherent framework of principles grounded in the task-technology fit approach. It elaborates a balanced triad of nine indispensable ADM principles—methodical (veracity, accuracy, validity), managerial (relevancy, quality, efficiency), and ethical (fairness, accountability, transparency)—and validates them through a systematic literature review of 126 ADM artifacts in HRM. The analysis reveals a troubling lack of attention to ethical and managerial dimensions, while even methodical aspects are often neglected—with the notable exception of accuracy. Building on these findings, the study outlines a forward-looking agenda to operationalize, calibrate, implement, evaluate, and codify ADM principles, ultimately promoting responsible, appropriate ADM in HRM that reflects an evaluative stance beyond mere aversion.
DOI of the first publication: 10.1016/j.eswa.2025.128954
URL of the first publication: https://doi.org/10.1016/j.eswa.2025.128954
Link to this record: urn:nbn:de:bsz:291--ds-463155
hdl:20.500.11880/40594
http://dx.doi.org/10.22028/D291-46315
ISSN: 1873-6793
0957-4174
Date of registration: 23-Sep-2025
Description of the related object: Supplementary Data
Related object: https://ars.els-cdn.com/content/image/1-s2.0-S0957417425025710-mmc1.docx
Faculty: HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft
Department: HW - Wirtschaftswissenschaft
Professorship: HW - Prof. Dr. Stefan Strohmeier
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
1-s2.0-S0957417425025710-main.pdf1,12 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons