Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-46688
Titel: Deep Learning-Based Diagnosis of Corneal Condition by Using Raw Optical Coherence Tomography Data
VerfasserIn: Mirsalehi, Maziar
Schwemm, Michael
Flockerzi, Elias
Szentmáry, Nóra
Abdin, Alaa Din
Seitz, Berthold
Langenbucher, Achim
Sprache: Englisch
Titel: Diagnostics
Bandnummer: 15
Heft: 24
Verlag/Plattform: MDPI
Erscheinungsjahr: 2025
Freie Schlagwörter: CNN
cornea
deep learning
ectasia
eye
GUI
keratoconus
OCT
raw data
vision
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Background/Objectives: Keratoconus (KC) is the most common corneal ectasia. This condition affects quality of vision, especially when it is progressive, and a timely and stage-related treatment is mandatory. Therefore, early diagnosis is crucial to preserve visual acuity. Medical data may be used either in their raw state or in a preprocessed form. Software modifications introduced through updates may potentially affect outcomes. Unlike preprocessed data, raw data preserve their original format across software versions and provide a more consistent basis for clinical analysis. The objec tive of this study was to distinguish between healthy and KC corneas from raw optical coherence tomography data by using a convolutional neural network. Methods: In to tal, 2737 eye examinations acquired with the Casia2 anterior-segment optical coherence tomography (Tomey, Nagoya, Japan) were decided by three experienced ophthalmol ogists to belong to one of three classes: ‘normal’, ‘ectasia’, or ‘other disease’. Each eye examination consisted of sixteen meridional slice images. The dataset included 744 examinations. DenseNet121, EfficientNet-B0, MobileNetV3-Large and ResNet18 were modified for use as convolutional neural networks for prediction. All reported metric values were rounded to four decimal places. Results: The overall accuracy for the modified DenseNet121, modified EfficientNet-B0, modified MobileNetV3-Large and modified ResNet18 is 91.27%, 91.27%, 92.86% and 89.68%, respectively. The macro-averaged sensitivity, macro-averaged specificity, macro-averaged Positive Pre dictive Value and macro-averaged F1 score for the modified DenseNet121, modified EfficientNet-B0, modified MobileNetV3-Large and modified ResNet18 are reported as 91.27%, 91.27%, 92.86% and 89.68%; 95.63%, 95.63%, 96.43% and 94.84%; 91.58% 91.65%, 92.91% and 90.24%; and 91.35%, 91.29%, 92.85% and 89.81%, respectively. Conclusions: The successful use of a convolutional neural network with raw optical coherence tomography data demonstrates the potential of raw data to be used instead of preprocessed data for diagnosing KC in ophthalmology.
DOI der Erstveröffentlichung: 10.3390/diagnostics15243115
URL der Erstveröffentlichung: https://doi.org/10.3390/diagnostics15243115
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-466882
hdl:20.500.11880/40928
http://dx.doi.org/10.22028/D291-46688
ISSN: 2075-4418
Datum des Eintrags: 5-Jan-2026
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Augenheilkunde
Professur: M - Univ.-Prof. Dr. Dipl.-Ing. Achim Langenbucher
M - Prof. Dr. Berthold Seitz
M - Prof. Dr. med. Nóra Szentmáry
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
diagnostics-15-03115.pdf10,94 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons