Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-46688 | Titel: | Deep Learning-Based Diagnosis of Corneal Condition by Using Raw Optical Coherence Tomography Data |
| VerfasserIn: | Mirsalehi, Maziar Schwemm, Michael Flockerzi, Elias Szentmáry, Nóra Abdin, Alaa Din Seitz, Berthold Langenbucher, Achim |
| Sprache: | Englisch |
| Titel: | Diagnostics |
| Bandnummer: | 15 |
| Heft: | 24 |
| Verlag/Plattform: | MDPI |
| Erscheinungsjahr: | 2025 |
| Freie Schlagwörter: | CNN cornea deep learning ectasia eye GUI keratoconus OCT raw data vision |
| DDC-Sachgruppe: | 610 Medizin, Gesundheit |
| Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
| Abstract: | Background/Objectives: Keratoconus (KC) is the most common corneal ectasia. This condition affects quality of vision, especially when it is progressive, and a timely and stage-related treatment is mandatory. Therefore, early diagnosis is crucial to preserve visual acuity. Medical data may be used either in their raw state or in a preprocessed form. Software modifications introduced through updates may potentially affect outcomes. Unlike preprocessed data, raw data preserve their original format across software versions and provide a more consistent basis for clinical analysis. The objec tive of this study was to distinguish between healthy and KC corneas from raw optical coherence tomography data by using a convolutional neural network. Methods: In to tal, 2737 eye examinations acquired with the Casia2 anterior-segment optical coherence tomography (Tomey, Nagoya, Japan) were decided by three experienced ophthalmol ogists to belong to one of three classes: ‘normal’, ‘ectasia’, or ‘other disease’. Each eye examination consisted of sixteen meridional slice images. The dataset included 744 examinations. DenseNet121, EfficientNet-B0, MobileNetV3-Large and ResNet18 were modified for use as convolutional neural networks for prediction. All reported metric values were rounded to four decimal places. Results: The overall accuracy for the modified DenseNet121, modified EfficientNet-B0, modified MobileNetV3-Large and modified ResNet18 is 91.27%, 91.27%, 92.86% and 89.68%, respectively. The macro-averaged sensitivity, macro-averaged specificity, macro-averaged Positive Pre dictive Value and macro-averaged F1 score for the modified DenseNet121, modified EfficientNet-B0, modified MobileNetV3-Large and modified ResNet18 are reported as 91.27%, 91.27%, 92.86% and 89.68%; 95.63%, 95.63%, 96.43% and 94.84%; 91.58% 91.65%, 92.91% and 90.24%; and 91.35%, 91.29%, 92.85% and 89.81%, respectively. Conclusions: The successful use of a convolutional neural network with raw optical coherence tomography data demonstrates the potential of raw data to be used instead of preprocessed data for diagnosing KC in ophthalmology. |
| DOI der Erstveröffentlichung: | 10.3390/diagnostics15243115 |
| URL der Erstveröffentlichung: | https://doi.org/10.3390/diagnostics15243115 |
| Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-466882 hdl:20.500.11880/40928 http://dx.doi.org/10.22028/D291-46688 |
| ISSN: | 2075-4418 |
| Datum des Eintrags: | 5-Jan-2026 |
| Fakultät: | M - Medizinische Fakultät |
| Fachrichtung: | M - Augenheilkunde |
| Professur: | M - Univ.-Prof. Dr. Dipl.-Ing. Achim Langenbucher M - Prof. Dr. Berthold Seitz M - Prof. Dr. med. Nóra Szentmáry |
| Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| diagnostics-15-03115.pdf | 10,94 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons

